Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Urko García-Couceiro, Oscar Castillo, Antonio Luque,* Garikoitz Beobide and Pascual Román

Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain

Correspondence e-mail: qipluara@lg.ehu.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.046$
$w R$ factor $=0.078$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4triazole $\left.-\kappa^{2} N^{1}, N^{5}\right]$ bis(nitrato-кO)copper(II)

The crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)_{2}\right]$, consists of neutral mononuclear molecules held together by means of an extensive threedimensional network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions and face-to-face $\pi-\pi$ interactions. The $\mathrm{Cu}^{\text {II }}$ atom, which lies at a center of inversion, has a distorted octahedral geometry, where the equatorial plane is composed of four N atoms belonging to two bidentate 4 -amino-3,5-bis(2-pyridyl)-1,2,4-triazole ligands, and the axial positions are occupied by two O atoms of two monodentate nitrate anions.

Comment

The 1,2,4-triazole system is able to bridge paramagnetic metal centers, providing compounds with remarkable magnetic properties (Tang et al., 2001). The presence of additional 2-pyridyl groups in 1,2,4-triazoles enhances the stability of the resulting complexes due to the chelate effect (Klingele \& Brooker, 2003). Thus, 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (hereafter abbreviated to abpt) is able to act as a bis-bidentate bridging ligand between metal centers (van Koningsbruggen et al., 1995), but it usually behaves as a bidentate ligand to give mononuclear complexes with interesting physical properties. For example, this ligand has recently been investigated for its capacity to give spin crossover iron(II) compounds (Moliner et al., 1999; Moliner et al., 2001; Gaspar et al., 2003). In the framework of our current research on first-row transition metal complexes containing N-heterocyclic terminal ligands (Castillo et al., 2001, 2003), we have obtained the title compound, (I).

(I)

As shown in Fig. 1, the $\mathrm{Cu}^{\mathrm{II}}$ atom of (I) is located on an inversion center and is surrounded by two N, N^{\prime}-bidentate abpt ligands and two weakly coordinated nitrate anions, which result in a tetragonally elongated $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore. The neutral abpt ligand coordinates to the metal center via atom N 1 of the triazole moiety $[\mathrm{Cu} 1-\mathrm{N} 1=1.899(3) \AA]$ and atom

Received 20 April 2004 Accepted 27 April 2004 Online 8 May 2004

The structure of (I), with 30% probability displacement ellipsoids. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines. [Symmetry code: (i) $-x,-y,-z$.]

Figure 2
Packing diagram of (I), showing intermolecular hydrogen bonds (dashed lines) and face-to-face aromatic interactions (double dashed lines).

N 8 from the adjacent pyridyl group [Cu1-N8 = 1.983 (3) \AA], forming a five-membered chelate ring with an $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 8$ bite angle of $86.1(1)^{\circ}$. These four atoms form the equatorial plane and the remaining potential donor atoms (N 2 and N 14) of the abpt ligand are uncoordinated. The octahedral coordination of the metal is completed by atoms O 23 and $\mathrm{O} 23^{\mathrm{i}}$ of two trans-coordinated nitrate anions at a quite long bond distance of 2.541 (3) \AA (symmetry code as in Table 1). The abpt ligand is essentially planar. The planes through the coordinated and non-coordinated pyridyl rings make dihedral angles of $6.5(2)$ and $9.2(2)^{\circ}$, respectively, with the triazole ring, while they are inclined at an angle of $4.8(2)^{\circ}$ with respect
to one another. These structural parameters are closed to those reported for analogous $\mathrm{Cu}^{\text {II }}$ complexes containing the bidentate abpt ligand (Cornelissen et al., 1992; Jircitano et al., 1997; van Koningsbruggen et al., 1998). Both amine H atoms are hydrogen bonded; one binds intramolecularly to atom N 14 , which may contribute to the overall planarity of the abpt ligand, and it also appears to stabilize the non-coordinating pyridine ring in a trans-like conformation (Faulmann et al., 1990; Cornelissen et al., 1992; Kunkeler et al., 1996). The second amino H atom is connected to a free atom O 21 belonging to a nitrate anion of a neighboring monomer (Fig. 2), resulting in infinite hydrogen-bonded chains running along the b axis. These chains are crosslinked by means of weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and offset face-to-face $\pi-\pi$ stacking interactions between uncoordinated pyridine rings belonging to adjacent molecules, with a centroid-centroid distance of 3.84 (1) \AA and a lateral displacement of $1.31 \AA$ (Janiak, 2000).

Experimental

A methanol solution $(35 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.048 \mathrm{~g}, 0.2 \mathrm{mmol})$ was added dropwise to a methanol solution $(10 \mathrm{ml})$ of abpt $(0.047 \mathrm{~g}$, 0.2 mmol). Light-blue single crystals of (I) were grown by the slow evaporation of the mixture at room temperature (yield 20-30\%, based on metal). Elemental analysis (\%) found ($\mathrm{C} / \mathrm{H} / \mathrm{N} / \mathrm{Cu}$): 43.48, 3.07, 29.48, 9.54; calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{CuN}_{14} \mathrm{O}_{6}: 43.41,3.04,29.53$, 9.57.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)_{2}\right]$
$M_{r}=664.09$
Triclinic, $P \overline{1}$
$a=6.940$ (1) \AA
$b=9.319(2) \AA$
$c=10.765(2) \AA$
$\alpha=99.36(1)^{\circ}$
$\beta=94.86(2)^{\circ}$
$\gamma=106.27(2)^{\circ}$
$V=653.2(2) \AA^{3}$
$Z=1$
$D_{x}=1.688 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Diffraction Xcalibur

 diffractometerω scans
Absorption correction: numerical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.884, T_{\text {max }}=0.973$
5600 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.078$
$S=0.81$
3102 reflections
205 parameters
$D_{m}=1.69$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of carbon tetrachloride and bromoform
Mo $K \alpha$ radiation
Cell parameters from 6086 reflections
$\theta=3.3-30.0^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, light blue
$0.20 \times 0.10 \times 0.02 \mathrm{~mm}$

3102 independent reflections
1192 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-12 \rightarrow 11$
$l=-11 \rightarrow 14$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.899(3)$	$\mathrm{Cu} 1-\mathrm{O} 23$	$2.541(3)$
$\mathrm{Cu} 1-\mathrm{N} 8$	$1.983(3)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{~N} 8-\mathrm{Cu} 1-\mathrm{N} 8^{\mathrm{i}}$	180
$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 8$	$86.1(1)$	$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{O} 23$	$87.4(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 8^{\mathrm{i}}$	$93.9(1)$	$\mathrm{N} 8-\mathrm{Cu} 1-\mathrm{O} 23^{\mathrm{i}}$	$92.6(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 23$	$87.0(1)$	$\mathrm{O} 23-\mathrm{Cu} 1-\mathrm{O} 23^{\mathrm{i}}$	180
$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{O} 23^{\mathrm{i}}$	$93.1(1)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H61 . .N14	0.97	2.10	2.901 (4)	139
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N} 2^{\text {i }}$	0.93	2.13	2.923 (4)	143
$\mathrm{N} 6-\mathrm{H} 62 \cdots \mathrm{O} 2{ }^{\text {ii }}$	0.96	2.26	3.186 (5)	161
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 21{ }^{\text {iii }}$	0.93	2.57	3.454 (6)	160
	0.93	2.32	3.247 (5)	173
C18-H18...O23 ${ }^{\text {v }}$	0.93	2.21	3.043 (4)	149
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 22^{\text {vi }}$	0.93	2.52	3.447 (5)	172

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, 1-y,-z$; (iii) $1+x, y, z$; (iv) $x-1, y, 1+z$; (v) $-1-x,-y,-z$; (vi) $1-x, 1-y,-z$.

The amino H atoms were located in difference Fourier maps and refined as riding on their carrier N atoms, in their as-found positions, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The C-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Universidad del País Vasco/ Euskal Herriko Unibertsitatea (9/UPV 00169.310-15329/2003) and the Ministerio de Ciencia y Tecnología (MAT2002-03166). UGC thanks the Universidad del Pais Vasco/Euskal Herriko Unibertsitatea for a predoctoral fellowship.

References

Castillo, O., Alonso, J., García-Couceiro, U., Luque, A. \& Román, P. (2003). Inorg. Chem. Commun. 6, 803-806.
Castillo, O., Luque, A., Román, P., Lloret, F. \& Julve, M. (2001). Inorg. Chem. 40, 5526-5535.
Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. \& Reedijk, J. (1992). Inorg. Chem. 31, 198-202.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Faulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1990). Acta Cryst. C46, 2357-2360.
Gaspar, A. B., Muñoz, M. C., Moliner, N., Ksenofontov, V., Levchenko, G., Guetlich, P. \& Real, J. A. (2003). Monatsh. Chem. 134, 285-294.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Jircitano, A. J., Sommerer, S. O. \& Aboud, K. A. (1997). Acta Cryst. C53, $434-$ 436.

Klingele, M. H. \& Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.
Koningsbruggen, P. J. van, Gatteschi, D., Graaff, R. A., Haasnoot, J. G. \& Reedijk, J. (1995). Inorg. Chem. 34, 5175-5182.
Koningsbruggen, P. J. van, Goubitz, K., Haasnoot, J. G. \& Reedijk, J. (1998). Inorg. Chim. Acta, 268, 37-42.
Kunkeler, P. J., van Koningsbruggen, P. J., Cornelissen, J. P. van der Horst, A. N., van der Kraan, A. M., Spek, A. L., Haasnoot, J. G. \& Reedijk, J. (1996). J. Am. Chem. Soc. 118, 2190-2197.
Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J. \& Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.

Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., Castro, M., Kahn, O. \& Real, J. A. (1999). Inorg. Chim. Acta, 291, 279-288.
Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.170. Oxford Diffraction, Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, J. K., Wang, H. M., Cheng, P., Lu, X., Liao, D. Z., Jiang, Z. H. \& Yan, S. P. (2001). Polyhedron, 20, 675-680.

